
10707
Deep Learning: Spring 2021

Andrej Risteski
Machine Learning Department

Lecture 5: Intro to
optimization

Supervised learning
Empirical risk minimization approach:

minimize a training loss 𝑙𝑙 over a class of predictors ℱ:

𝑓𝑓 = argmin
𝑓𝑓∈ℱ

Σ
𝑥𝑥,𝑦𝑦 :training samples

𝑙𝑙 𝑓𝑓 𝑥𝑥 ,𝑦𝑦

Three pillars:

(1) How expressive is the class ℱ? (Representational power)

(2) How do we minimize the training loss efficiently? (Optimization)

(3) How does 𝑓𝑓 perform on unseen samples? (Generalization)

The world of continuous
optimization

The typical training task in ML can be cast as: min
𝑥𝑥∈ℝ𝑑𝑑

𝑓𝑓(𝑥𝑥)

Usually, it is cheap to calculate f 𝑥𝑥 ,∇𝑓𝑓(𝑥𝑥), but (more) expensive to
calculate higher-order derivatives.

Most algorithms we will look at are iterative: they progressively pick
points 𝑥𝑥1, 𝑥𝑥2, … that are supposed to bring “improvement”.

Non-exhaustive coverage: entire field of optimization, with
applications vastly beyond ML. We focus on deep-learning-relevant
methods.

The mother of all optimization
algorithms: gradient descent

The simplest optimization algorithm: Taylor expand and find the
direction of “steepest” descent. More precisely:

By Taylor’s theorem, we have 𝑓𝑓 𝑥𝑥 + Δ ≈ 𝑓𝑓 𝑥𝑥 + Δ𝑇𝑇∇𝑓𝑓 𝑥𝑥 + 𝑂𝑂 ||Δ||2

So, if we ignore higher-order effects, we have

argmin
Δ, Δ ≤𝜖𝜖

{ 𝑓𝑓 𝑥𝑥 + Δ − 𝑓𝑓 𝑥𝑥 } = −𝜖𝜖
∇𝑓𝑓 𝑥𝑥

| ∇𝑓𝑓 𝑥𝑥 |

i.e. we should move (appropriately scaled) opposite of the gradient

Gradient descent, pictorially

What can we hope for, in the case that | Δ | → 0?

We stop moving when ∇𝑓𝑓 �𝑥𝑥 ≈ 0: these care called stationary
points.

What kinds of stationary points are there?

Types of stationary points

Global minimum: actual minimizer, namely 𝑓𝑓 �𝑥𝑥 ≤ 𝑓𝑓 𝑥𝑥 ,∀𝑥𝑥 ∈ ℝ𝑑𝑑

Saddle points: stationary point that is *not* a local min/max.

Local minimum: 𝑓𝑓 �𝑥𝑥 ≤ 𝑓𝑓 𝑥𝑥 , ∀𝑥𝑥 s. t. 𝑥𝑥 − �𝑥𝑥 ≤ 𝜖𝜖 for some 𝜖𝜖 > 0

Local maximum: 𝑓𝑓 �𝑥𝑥 ≥ 𝑓𝑓 𝑥𝑥 , ∀𝑥𝑥 s. t. 𝑥𝑥 − �𝑥𝑥 ≤ 𝜖𝜖 for some 𝜖𝜖 > 0

Types of stationary points

Global minimum: finding these in general is very hard (both in
theory – NP-hard, as well as in practice)

Local minimum: seem to work quite well often. Some theoretical
understanding of why in very restricted cases.

Saddle points: typically bad, arise from invariances in input.
Want to avoid these. (Stay tuned.)

Checking for local minima?
Second order checks: Hessian approximates a function to second order

Taylor’s thm: 𝑓𝑓 𝑥𝑥 + Δ ≈ 𝑓𝑓 𝑥𝑥 + Δ𝑇𝑇∇𝑓𝑓 𝑥𝑥 + 1
2
Δ𝑇𝑇∇2𝑓𝑓 𝑥𝑥 Δ + 𝑂𝑂 ||Δ||3

≈ 𝑓𝑓 𝑥𝑥 +
1
2Δ

𝑇𝑇∇2𝑓𝑓 𝑥𝑥 Δ + 𝑂𝑂 ||Δ||3

If ∇2𝑓𝑓 𝑥𝑥 ≻ 0: for any direction Δ, and small enough | Δ |

Δ𝑇𝑇∇2𝑓𝑓 𝑥𝑥 Δ + 𝑂𝑂 ||Δ||3 ≥ 0, so 𝑓𝑓 𝑥𝑥 + Δ > 𝑓𝑓(𝑥𝑥)

If ∇2𝑓𝑓 𝑥𝑥 has both positive and negative eigenvalues:

Saddle point (not a local minimum/maximum)

If neither of these attains, test is inconclusive!

Local minimum! (Flipped for local maximum)

The descent lemma: analyzing
gradient descent

So far, we’ve only considered the limit | Δ | → 0.

If| Δ | is too large, the Taylor expansion will be invalid (and gradient
descent can “jump over” local minima).

If| Δ | is too small, the runtime of the algorithm will suffer.
The descent lemma characterizes the “sweet spot”:

Theorem (descent lemma): Let 𝑓𝑓 be twice differentiable, and
||∇2𝑓𝑓(𝑥𝑥)||2 ≤ 𝛽𝛽. Then, setting 𝜂𝜂 = 1/𝛽𝛽, and calling 𝑥𝑥𝑡𝑡 the iterates of
gradient descent, namely 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝜂𝜂∇𝑓𝑓 𝑥𝑥𝑡𝑡 , we have:

𝑓𝑓 𝑥𝑥𝑡𝑡 − 𝑓𝑓 𝑥𝑥𝑡𝑡+1 ≥
1
2𝛽𝛽 ||∇ 𝑓𝑓(𝑥𝑥𝑡𝑡)| �

2

2

Using the descent lemma:
Lyapunov functions

Theorem (descent lemma): Let 𝑓𝑓 be twice differentiable, and
||∇2𝑓𝑓(𝑥𝑥)||2 ≤ 𝛽𝛽. Then, setting 𝜂𝜂 = 1/𝛽𝛽, and calling 𝑥𝑥𝑡𝑡 the iterates of
gradient descent, namely 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝜂𝜂∇𝑓𝑓 𝑥𝑥𝑡𝑡 , we have:

𝑓𝑓 𝑥𝑥𝑡𝑡 − 𝑓𝑓 𝑥𝑥𝑡𝑡+1 ≥
1
2𝛽𝛽 ||∇ 𝑓𝑓(𝑥𝑥𝑡𝑡)| �

2

2

Suppose 𝑓𝑓 is lower bounded (e.g. 𝑓𝑓 ≥ 0), and 𝑓𝑓(𝑥𝑥0) ≤ 𝑀𝑀

Suppose we want point 𝑥𝑥𝑡𝑡 , s.t. ∇𝑓𝑓(𝑥𝑥𝑡𝑡 | ≤ 𝜖𝜖.

Lyapunov (potential) fn argument: suppose ∀𝑡𝑡 ∈ [0,𝑇𝑇], ∇𝑓𝑓(𝑥𝑥𝑡𝑡 | ≥ 𝜖𝜖

Then, 𝑓𝑓 𝑥𝑥𝑇𝑇 ≤ 𝑓𝑓 𝑥𝑥0 − 𝑇𝑇 1
2𝛽𝛽
𝜖𝜖2 ≤ 𝑀𝑀 − 𝑇𝑇 1

2𝛽𝛽
𝜖𝜖2. Also, 𝑓𝑓 𝑥𝑥𝑇𝑇 ≥ 0.

Putting these together, we get 𝑇𝑇 ≤ 2 𝑀𝑀𝛽𝛽/𝜖𝜖2

Proving the Descent Lemma

Theorem (descent lemma): Let 𝑓𝑓 be twice differentiable, and ||∇2𝑓𝑓(𝑥𝑥)||2 ≤ 𝛽𝛽.
Then, setting 𝜂𝜂 = 1/𝛽𝛽, and calling 𝑥𝑥𝑡𝑡 the iterates of gradient descent, we have:

𝑓𝑓 𝑥𝑥𝑡𝑡 − 𝑓𝑓 𝑥𝑥𝑡𝑡+1 ≥
1
2𝛽𝛽

||∇ 𝑓𝑓(𝑥𝑥𝑡𝑡)| �
2

2

Proof: By Taylor expansion and the mean value theorem, we have

𝑓𝑓 𝑥𝑥 + Δ = 𝑓𝑓 𝑥𝑥 + Δ𝑇𝑇∇𝑓𝑓 𝑥𝑥 +
1
2
Δ𝑇𝑇∇2𝑓𝑓 𝑦𝑦 Δ

Moreover, Δ𝑇𝑇∇2𝑓𝑓 𝑦𝑦 Δ ≤ ||∇2𝑓𝑓 𝑦𝑦 |2 Δ |22 ≤ 𝛽𝛽| Δ |22. Plugging in Δ = −𝜂𝜂∇𝑓𝑓 𝑥𝑥𝑡𝑡 :

𝑓𝑓 𝑥𝑥𝑡𝑡+1 ≤ 𝑓𝑓 𝑥𝑥𝑡𝑡 − 𝜂𝜂 ∇𝑓𝑓 𝑥𝑥𝑡𝑡
2 +

1
2
𝛽𝛽𝜂𝜂2 ∇𝑓𝑓 𝑥𝑥𝑡𝑡

2

= 𝑓𝑓 𝑥𝑥𝑡𝑡 − 1/𝛽𝛽 ∇𝑓𝑓 𝑥𝑥𝑡𝑡
2 +

1
2

1/𝛽𝛽 ∇𝑓𝑓 𝑥𝑥𝑡𝑡
2

= 𝑓𝑓 𝑥𝑥𝑡𝑡 − 1/2𝛽𝛽 ∇𝑓𝑓 𝑥𝑥𝑡𝑡
2

Choosing a learning rate in practice

The previous lemma was an instance of a fixed learning rate (1/𝛽𝛽).
In fact, proof works up to “critical” value of 2/𝛽𝛽.
Fixed learning rates are common: typically grid search b/w 10−6 and 1.
Pick largest rate for which training doesn’t diverge.
Frequently ~ 10−2works ok.

Decaying learning schedules are also popular, e.g. : 𝜂𝜂𝑡𝑡 =
𝜂𝜂0𝜏𝜏

max(𝑡𝑡, 𝜏𝜏)
(i.e. set learning rate to 𝜂𝜂0 for the first 𝜏𝜏 iteration, then decay like 1/𝑡𝑡)
Some intuitions for a decaying rate come from standard convex
optimization.

Understanding gradient
descent locally

Let’s consider 𝑓𝑓’s that are quadratic. (Close to local minima, this will be “true”
due to Taylor). What quadratics are bad/good for gradient descent?

Bad behavior: gradients don’t point
towards minimizer – a lot of zig-
zaging until we reach minimizer.

Intuitively: ellipsoidal contours
(level sets) should be worse than
spherical level sets.

Question: Let 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥, can we characterize convergence time of gradient

descent more precisely? What does it depend on?

Understanding gradient
descent locally

Question: Let 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥, can we characterize convergence time of gradient

descent more precisely? What does it depend on?

Thm: Let 𝐴𝐴 be a symmetric positive-definite matrix with minimum and
maximum eigenvalues 𝜆𝜆min and 𝜆𝜆max and denote 𝜅𝜅 = 𝜆𝜆max /𝜆𝜆min (condition
number).
The iterates of gradient descent with 𝜂𝜂 = 2

𝜆𝜆max +𝜆𝜆min
satisfy:

𝑥𝑥𝑡𝑡 ≤
𝜅𝜅 − 1
𝜅𝜅 + 1

𝑡𝑡

| 𝑥𝑥0 |

= 𝑥𝑥𝑡𝑡 − 0 , i.e. distance from optimum = 𝑥𝑥0 − 0 , i.e. distance from optimum

Understanding gradient
descent locally

Question: Let 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥, can we characterize convergence time of gradient

descent more precisely? What does it depend on?
Thm: Let 𝐴𝐴 be a symmetric positive-definite matrix with minimum and
maximum eigenvalues 𝜆𝜆min and 𝜆𝜆max and denote 𝜅𝜅 = 𝜆𝜆max /𝜆𝜆min (condition
number).
The iterates of gradient descent with 𝜂𝜂 = 2

𝜆𝜆max +𝜆𝜆min
satisfy:

𝑥𝑥𝑡𝑡 ≤
𝜅𝜅 − 1
𝜅𝜅 + 1

𝑡𝑡

| 𝑥𝑥0 |

= 1 −
2

𝜅𝜅 + 1

𝑡𝑡

| 𝑥𝑥0 |

𝜅𝜅 large => slower
convergence

Understanding gradient
descent locally

Thm: Let 𝐴𝐴 be a symmetric positive-definite matrix with minimum and
maximum eigenvalues 𝜆𝜆min and 𝜆𝜆max and denote 𝜅𝜅 = 𝜆𝜆max /𝜆𝜆min (condition
number).
The iterates of gradient descent with 𝜂𝜂 = 2

𝜆𝜆max +𝜆𝜆min
satisfy:

𝑥𝑥𝑡𝑡 ≤
𝜅𝜅 − 1
𝜅𝜅 + 1

𝑡𝑡

| 𝑥𝑥0 |

Proof: | 𝑥𝑥𝑡𝑡+1 | = | 𝑥𝑥𝑡𝑡 − 𝜂𝜂∇𝑓𝑓 𝑥𝑥𝑡𝑡 |

= | 𝑥𝑥𝑡𝑡 − 𝜂𝜂𝐴𝐴𝑥𝑥𝑡𝑡 |

Question: Let 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥, can we characterize convergence time of gradient

descent more precisely? What does it depend on?

= | (𝐼𝐼 − 𝜂𝜂𝐴𝐴)𝑥𝑥𝑡𝑡 |≤ 𝐼𝐼 − 𝜂𝜂𝐴𝐴 2 𝑥𝑥𝑡𝑡 2

≤ max 1 − 𝜂𝜂𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 , 1 − 𝜂𝜂𝜆𝜆min 𝑥𝑥𝑡𝑡 2

=
𝜆𝜆max − 𝜆𝜆min
𝜆𝜆max + 𝜆𝜆min

𝑥𝑥𝑡𝑡 2
=
𝜅𝜅 − 1
𝜅𝜅 + 1 𝑥𝑥𝑡𝑡 2

Fixes to the conditioning problem
What can we do for poorly conditioned problems?

Quadratic problem suggests solution: we can solve it in closed form!!

If 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥 + 𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑐𝑐, minimizer is 𝐴𝐴−1𝑏𝑏 . (Just take derivatives, set to 0.)

What do we do for arbitrary f? Approximate function to second order!!

By Taylor’s thm: 𝑓𝑓 𝑥𝑥 + Δ ≈ 𝑓𝑓 𝑥𝑥 + Δ𝑇𝑇∇𝑓𝑓 𝑥𝑥 + 1
2
Δ𝑇𝑇∇2𝑓𝑓 𝑥𝑥 Δ + 𝑂𝑂 ||Δ||3

Ignoring 3rd and higher order terms, and using the above observation for
quadratics:

Set 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝜂𝜂 ∇2𝑓𝑓 𝑥𝑥𝑡𝑡
−1 ∇𝑓𝑓 𝑥𝑥𝑡𝑡

Newton’s method.

Fixes to the conditioning problem

Problem: need to invert a 𝑑𝑑 × 𝑑𝑑 matrix => 𝑑𝑑3runtime. Way too expensive.

Newton’s method.

Set 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝜂𝜂 ∇2𝑓𝑓 𝑥𝑥𝑡𝑡
−1 ∇𝑓𝑓 𝑥𝑥𝑡𝑡

Some attempts to scale
this exist. See K-FAC
(Martens, Grosse ‘15)

Momentum (Polyak ‘64)
Alternative fix: instead of using the gradient at the current step, use a
linear combination of the gradients at prior steps. “Smooths” out zig-
zagging, by not relying too much on current gradient.

𝑣𝑣𝑡𝑡+1 = −∇𝑓𝑓 𝑥𝑥𝑡𝑡 + 𝛽𝛽𝑣𝑣𝑡𝑡
𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + 𝜂𝜂𝑣𝑣𝑡𝑡+1

Linear combination of
prior gradients + current one

Helps provably! For quadratic case, i.e. 𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝐴𝐴 𝑥𝑥 , you can show:

𝑥𝑥𝑡𝑡 ≤
𝜅𝜅 − 1
𝜅𝜅 + 1

𝑡𝑡

| 𝑥𝑥0 | It’s common in practice to take
𝛽𝛽 = 0.5, 0.9, 0.99.

Momentum vs grad. descent
https://tangbinh.github.io/01/04/Optimizers.html

Momentum (Polyak ‘64)

https://tangbinh.github.io/01/04/Optimizers.html

Momentum (Nesterov ‘83)
Nesterov acceleration is a lookahead variant of momentum, which has
provable benefits for *any* convex function. (And is in a certain precise
sense, the optimal first-order optimization algorithm).

𝑣𝑣𝑡𝑡+1 = −∇𝑓𝑓 𝑥𝑥𝑡𝑡 + 𝛽𝛽𝑣𝑣𝑡𝑡 + 𝛽𝛽𝑣𝑣𝑡𝑡
𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + 𝜂𝜂 𝑣𝑣𝑡𝑡+1

Evaluate gradient at a
“lookahead” point

Magical! There’s been a mini cottage industry to “explain” Nesterov
acceleration.

Taking gradients of neural networks:
backpropagation

The workhorse for training neural networks: an algorithm that for a
network with V nodes and E edges calculates the gradient in linear
time O(V+E).

The name backpropagation was introduced by Rumelhart, Hinton,
Williams ‘86, but so natural that it was rediscovered multiple times
(as early as 60s). Algorithm seems to first be mentioned in Werbos’
thesis ‘74 in the context of neural networks.

In control theory: Kelley ‘60, Bryson ’61 [cast as dynamic
programming];

In theoretical computer science: Baur-Strassen lemma ’83 [in the
context of algebraic circuits]

Taking gradients of neural networks:
backpropagation

The main tool for deriving backprop: chain rule

Suppose 𝑓𝑓(𝑦𝑦) = 𝑓𝑓(𝑥𝑥1(𝑦𝑦), 𝑥𝑥2(𝑦𝑦), … , 𝑥𝑥𝑛𝑛(𝑦𝑦))

Then, 𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= ∑𝑖𝑖=1𝑛𝑛 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

Observation 1: It suffices to take
derivatives with respect to node functions.

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝑓𝑓

𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎(𝑤𝑤, 𝑧𝑧 + 𝑏𝑏)

𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕 𝜎𝜎

′ 𝜕𝜕 𝑧𝑧1

Taking gradients of neural networks:
backpropagation

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑗𝑗

= �
𝑘𝑘

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑧𝑧𝑘𝑘

𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕𝜕𝜕𝑗𝑗

Observation 2: The obvious forward propagation algorithms results in
runtime of Ω 𝑉𝑉2 . (Bad! We want O(V+E))

Obvious algorithm? Calculate inductively 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

, for all pairs (𝜕𝜕𝑖𝑖 ,𝜕𝜕𝑗𝑗) where

𝜕𝜕𝑗𝑗 is lower than 𝜕𝜕𝑖𝑖 (obviously, this includes 𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢

which we want)

t+1 𝜕𝜕𝑖𝑖

𝜕𝜕𝑗𝑗

Easy as in prior slide
Have these by
inductive hypothesis.

Taking gradients of neural networks:
backpropagation

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑗𝑗

= �
𝑘𝑘

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑧𝑧𝑘𝑘

𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕𝜕𝜕𝑗𝑗

Observation 2: The obvious forward propagation algorithms results in
runtime of Ω 𝑉𝑉2 . (Bad! We want O(V+E))

Obvious algorithm? Calculate inductively 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

, for all pairs (𝜕𝜕𝑖𝑖 ,𝜕𝜕𝑗𝑗) where

𝜕𝜕𝑗𝑗 is lower than 𝜕𝜕𝑖𝑖 (obviously, this includes 𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢

which we want)

t+1 𝜕𝜕𝑖𝑖

𝜕𝜕𝑗𝑗

Bad – this will end up with 𝛺𝛺 𝑉𝑉2 algorithm.

Taking gradients of neural networks:
backpropagation

𝑆𝑆 = �
𝑘𝑘

𝑚𝑚𝑘𝑘

Observation 3: The better way to do this is in a backward fashion.

Message passing algorithm [dynamic programming]: each node 𝜕𝜕 receives
messages (real numbers) from its neighbors on top. Let their sum be 𝑆𝑆. The node
passes to downward neighbors z: 𝑆𝑆 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
. Proceed from top to down.

𝜕𝜕

𝑧𝑧

Claim: The sum S of the messages that each node
u computes is equal to 𝜕𝜕𝑓𝑓

𝜕𝜕𝑢𝑢
.

Proof: By induction.
Suppose u is at layer t, and inductive hypothesis holds for
layers t+1 and above. Sum of messages to u satisfies:

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4

= �
𝑘𝑘

𝜕𝜕𝑓𝑓
𝜕𝜕𝑣𝑣𝑖𝑖

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

Inductive hypothesis Def. of messages

Taking gradients of neural networks:
backpropagation

Observation 3: The better way to do this is in a backward fashion.
Message passing algorithm [dynamic programming]: each node 𝜕𝜕 receives
messages (real numbers) from its neighbors on top. Let their sum be 𝑆𝑆. The node
passes to downward neighbors z: 𝑆𝑆 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
. Proceed from top to down.

𝜕𝜕

𝑧𝑧

Amount of work: each node u needs to sum its upward
neighbor messages (at most deg(u) of them), and pass a
message to its downward neighbors (at most deg(u) of
them).

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4Each downward message just takes an extra 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

calculation
(easy const. time), so each node does O(deg(u)) amount of
work.
Hence, total amount of work for all nodes is O ∑𝑢𝑢 deg 𝜕𝜕 =
𝑂𝑂(𝐸𝐸)
Amount of memory: for calculating 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
, we need the activation

values of intermediate nodes – so memory 𝑂𝑂 𝑉𝑉 .
[Important! If recalculating these, runtime would be quadratic]

	10707�Deep Learning: Spring 2021
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

